Clustering-Driven Deep Embedding With Pairwise Constraints
نویسندگان
چکیده
منابع مشابه
Clustering-driven Deep Embedding with Pairwise Constraints
Recently, there has been increasing interest to leverage the competence of neural networks to analyze data. In particular, new clustering methods that employ deep embeddings have been presented. In this paper, we depart from centroid-based models and suggest a new framework, called Clustering-driven deep embedding with PAirwise Constraints (CPAC), for non-parametric clustering using a neural ne...
متن کاملFuzzy Clustering with Pairwise Constraints for Knowledge-Driven Image Categorization
The identification of categories in image databases usually relies on clustering algorithms that only exploit the feature-based similarities between images. The addition of semantic information should help improving the results of the categorization process. Pairwise constraints between some images are easy to provide, even when the user has a very incomplete prior knowledge of the image catego...
متن کاملBayesian Active Clustering with Pairwise Constraints
Clustering can be improved with pairwise constraints that specify similarities between pairs of instances. However, randomly selecting constraints could lead to the waste of labeling effort, or even degrade the clustering performance. Consequently, how to actively select effective pairwise constraints to improve clustering becomes an important problem, which is the focus of this paper. In this ...
متن کاملEvidence Accumulation Clustering using Pairwise Constraints
Recent work on constrained data clustering have shown that the incorporation of pairwise constraints, such as must-link and cannot-link constraints, increases the accuracy of single run data clustering methods. It was also shown that the quality of a consensus partition, resulting from the combination of multiple data partitions, is usually superior than the quality of the partitions produced b...
متن کاملNeural network-based clustering using pairwise constraints
In this work, we address the problem of finding a clustering of high-dimensional data using only pairwise constraints provided as input. Our strategy utilizes the back-propagation algorithm for optimizing neural networks to discover the clusters, while at the same time the features are also learned during the same training process. In order to do this, we design a novel architecture that can in...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Computer Graphics and Applications
سال: 2019
ISSN: 0272-1716,1558-1756
DOI: 10.1109/mcg.2018.2881524